JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

Server Architectures for

Massively Multiplayer
Online Games

Jeffrey Kesselman
Game Server Architect
Game Technology Group
Sun Microsystems, Inc.

java.sun.com/javaone/sf

<,

Java“

"%ézm

Server Architectures for MMOLGs

What we're going to cover

A brief history of massively
multiplayer online games

e The state of the industry today
e What Sun is bringing to the industry

A Brief History of
Massively Multiplayer Games

« MUDs, MUSHs, MUCKs, and MOOs

— The original “massively” multiplayer online games
—Online user pop of maybe 50 to 100 people

— Based on the old Infocom text adventures
—State machine based textual simulation

“Go Rear”

3 | 2004 JavaOne™ Conference | Session TS-1351

MUDs, MUSHs, MUCKs and MOOs

o Still text-based, but with multiple textual clients

o State formalized in concept of “room”

— Only those in the same room
can effect that room or each other

— N-squared scaling problem solved
with simple divide and conquer

 All of world state generally still held in-memory

 Ramifications
— Limit on world-data size == memory size of host
— The “fire-marshal” solution for over-crowded rooms

Today: The Everquest Model

o Still room based
— “Region” or “area” == room + geometry

e Rooms assigned to servers
— Area Transfer == server switch

e Login Server does initial connection

Everquest Login: Connect

e User connects to Login server
and authenticates

6 | 2004 JavaOne™ Conference | Session TS-1351

Everquest Login: Initial Region

e Login server transfers user to last region

7 | 2004 JavaOne™ Conference | Session TS-1351

Everquest Login: Initial Region

o User drops connection to login server
and connect to Area

8 | 2004 JavaOne™ Conference | Session TS-1351

Everquest Login: Initial Region

e When user triggers area transfer,
area sends transfer command

9 | 2004 JavaOne™ Conference | Session TS-1351

Everquest Login: Initial Region

e User drops connection to Area 1

and connects to Area 2

%
2
5
QY
Q,

10 | 2004 JavaOne™ Conference | Session TS-1351

Everquest Login: Initial Region

e Area 2 updates login server on

user’s last area
Update

11 | 2004 JavaOne™ Conference | Session TS-1351

Still a MUD Basically

* "Rooms” (Areas, Regions)
organize resource usage

 Room state held in memory

* Now one server per room,
which increases capacity

The Limitations of the Model

* This is a perfect model if people
spread themselves out naturally
In a Gaussian distribution

— People are social—they clump

 Wasted systems where no one is in that region
— CPU idle, memory holding state

* Fire marshal limit is bigger but still present
* Not fault tolerant

» Static world due to limited persistence

e Area boundaries unnatural

Sharding

e Solved the fire marshal problem by duplicating
entire game—A shard == a duplicate cluster

e |ssues:
— Now you are wasting N servers in light used areas
— Split the user-base—Bad for business

—Hurts recruitment

—Makes it harder to maintain
“critical mass” on any one shard

Replication

e Fault tolerance through replication of servers
— Now wasting 2xN servers for each light used area
— Double point of failure

Hidden Boundaries

* Hide the boundaries by over-lapping geometry
and having “leaky edges”

— Works pretty well to make world appear continuous
— This model maps well to a grid

e Issues:
— Can still get stutters at region transfer time

— Redundant data means regions have smaller
actual play areas (limit is memory size)

Spatial Subdivision

e Solve fire marshal problem by
dynamically creating sub-regions

e |ssues:

— Visibility dynamically decreases
as regions get sub-divided

— Still doesn’t solve waste in unused base regions

— Complicates replication and
makes it more expensive

— Practical limits to sub-dividability (all the players
standing right next to each other)

— Will not map to a grid

And So We Come to Today...

 What you have just seen is the limit
of MMOLRPG tech deployed today

— Not fault tolerant
— Expensive/wasteful
— Limited persistence

—Only char data—best systems check point
every 15 min

— Scaling only by splitting user base

The Sun Game Server

* A container system for highly scalable,
highly efficient, fault tolerant, dead-lock proof,

completely persistent, load-balanced execution
of event-driven simulations

— Boy that's a mouthful, huh?
e Based on a Paradigm Shift

— QObservation 1: Geometry is data
— QObservation 2: Data doesn’t use processor
— Observation 3: Users use processor

— Conclusion: Assign compute resources to users, not
regions

What the Developer Sees:
GLOs

e Developer creates a world of
Game Logic Objects (GLOs)

— “Real objects”
— QObject register to handle events

o GLO(s) is/are defined by a Java™ Class
— Must be serializable
— If it is going to receive an event, must
implement the handler interface for that event

e GLO code is apparently mono-threaded
— No synchronization necessary

What the Developer Sees:
Events and Tasks

 When an event arrives a Task is queued

— Task is define as a GLO reference, a method
to call, and parameters to pass to it

— When Task runs the GLO is “woken up”
and the method is called

—GLO can wake up and call other GLOs

—GLO can register event listeners

—GLO can queue tasks

—GLO can execute arbitrary method code
— Tasks can either commit or abort

—On commit, modified GLOs are
written back and put back “to sleep”

—On abort, modified GLOs are rolled back and put
to sleep. Task is re-queued for later execution

What the Developer Sees:
Waking Up a GLO

* A GLO can be woken up
by a get() or by a peek()

— get() is a write lock. GLO is “owned” by that
task and will be updated at task completion

— peek() is a non-repeatable read; a task-local
copy of the GLO at its last saved value is created
and the GLO is not updated at task completion

— Initial object fetch in task is always a get()

e get() causes potential contention; for maximal
parallel performance an app should use peek()
whenever possible

— Some fine points and “best practices”

Life Cycle of an Example Event

o Step 1: Packet arrives from user

&
3
L0

o &
QFf

23 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Step 2: Event is queued for data packet

User Data
Task

24 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Step 3: Event is taken off queue for execution
Initial object is fetched from Objectstore

o @6
D S

25 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Step 4: Object store returns GLO from get()

26 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Step 5: A transactional context and a thread are
assigned to task; initial method invoked
on that thread

27 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Step 5: Initial GLO chains in other GLOs
as need with get() or peek()
S

28 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Step 6: Initial GLO returns
from initial method call

29 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

e Step 7: Transaction is committed;
GIOs return to Objectstore

30 | 2004 JavaOne™ Conference | Session TS-1351

Life Cycle of an Example Event

o Alternate Step 7: Transaction is aborted;
GIOs are rolled back and return to Objectstore

31 | 2004 JavaOne™ Conference | Session TS-1351

That’s It

e The horizontal scaling, fault-tolerance,
persistence, and load balancing are all
properties of the underlying system

How the Magic Works!

e Bet you're dying for the next slides...

33 | 2004 JavaOne Conference | Session TS-1351

The Sun Game Server Architecture

|
Flow of Objacs

Simulaton : :
Loghe Senver Smulation Srmulation
Logic Server Logic Servar

Crana packels in and our

Communicalions Channel

Coordination

Comimumnatinng

r

Cata packais in and oul

34 | 2004 JavaOne Conference | Session TS-1351

Okay, So What Does That Mean?

 In Architecture it is structured much
like a classic 3 tier enterprise system

— Comm Layer (Edge Layer)
— Stateless Game Logic Layer (Business Logic)
— Object Store (Database)

 In implementation it is radically different because
its needs are different

— Total input to output system latencies in 10s of ms
— Requires no multi-threading knowledge to use

— Requires no database knowledge to use

— Handles persistence (almost) orthogonally

— Very simple coding model

Tier 3: The Objectstore

e This is where a lot of the magic happens

e Looks to tier 2 like a highly available
cloud of persistent objects

» All game state for all games running on the
Sun's game server back-end infrastructure
resides here

e Tier 2 checks objects out as needed by a task
and returns them when tasks complete or abort

* ltis a very fast fault-tolerant horizontally scalable
transactional database

— Time to fetch and de-serialize an
object is in the tenths of milliseconds

Tier 2: The Game Logic Layer

e This is a stateless task processor

e Users are assigned to one of a
horizontally scaled set of stacks

 As user events come in, they create
tasks in a task queue

e Because this layer is stateless, if it dies,
the users just reconnect to another stack
and keep on playing

Tier 2: Task Abort

e Tier 3 (Objectstore) provides deadlock detection
through Timestamp Ordering

— Std deadlock avoidance algorithm
— “Fair” (ensures no starvation)

e On potential deadlock, tier 2 is notified
and newer task aborts

— GLOs rolled back

— GLO locks released

— Task surrenders thread and transaction
— Task is re-queued for later execution

e Obviously lots of deadlocks hurt efficiency
— Game Logic Layer tracks and gives warnings

Tier 1: The Comm Layer

e “User manager” is the only part
that knows how client is connected
— Generates user login/logout/packet events
— Handles server discovery and selection

— Different user managers for different connection
strategies

—e.g. Gamespy, HT TP, etc.

e Makes the user base seem contiguous

— Tier 2 just sends messages to user IDs;
doesn’t care where they are actually connected

 Provides “shortcut’ for client to client comm
— Never goes to tier 2
— Safer then direct client to client connection

Failure and Recovery Modes

* N horizontal stacks fail
— Users reconnect to other stacks and go on playing
— Time to reconnect hidden by client dead-reckoning
— Performance degrades evenly throughout back-end
— Only loss is tasks on queue (unimportant)

e Entire back end fails
— QObject store is left in a referentially integral state
— At most a few moments of gameplay are lost

e Resources added to back end
— New stack calls out and says stack available

— Heavily-loaded stacks force some of their user
to reconnect

Dynamic Load Balancing

o Stacks send periodic load updates

* Heavily loaded stacks give up
users to lightly loaded ones

e One stack can run many
different games at once

e System load balances across all games

— When games need more of the back end they get it

—Games that are always lightly used only use that
percentage of the resources

—Makes many lightly used games as economically
sound as one heavily used game

—Makes “pay as you use” models possible

That’s It

e Obviously the scalable Objectstore
IS @ major piece of the technical puzzle

— Current implementation written ontop of TimesTen

— Sun-magic to make it horizontally scale
for such a write intensive application

 The "app server” for near real-time
event-driven simulations

e Currently in ongoing development
 White paper down at the entertainment pavilion

The Rest of the Story

— Billing, authentication, portal, etc.

* The Cell Phone infrastructure
— Provisioning, communications, etc.

— All the cell phone stuff the User Manager
doesn’t deal with

e Athomas Goldberg is your man!

o All that other back-end stuff we do so well...

avaOne

Sun’s 2004 Worldwide Java Developer Conference-

Bridging the

N etw o r k D i Vi d e java.sun.com/javaone/sf

L=
—

Java

44 | 2004 JavaOne Conference | Session TS-1351

45 | 2004 JavaOne™ Conference | Session TS-1351

46 | 2004 JavaOne Conference | Session TS-1351

Game Design Challenges

* Mobile devices are currently
treated like consoles

— Need to find activities appropriate to each device

* Need to look for unique games

— (Games that use other parts of the device
—Camera, GPS, Controllers, etc.
— Massively Multiplayer Casual Online Games

e Mobile devices are social devices
— Leverage social interaction between players
— Portals into a shared experience

Technical Challenges

e Need common infrastructure

— Cost of developing online capability
for a single platform can crush a game

 Need to standardize, so game
developers can focus on games

— Cross-network communication
— Federated identity
— Micropayments and billing

e Need to work with developers and operators

— Develop solutions to address
the entire delivery chain

Business Challenges

e Pricing models

— Existing models don’t support multiplayer
—“Mobile Everquest” would cost you $10,000/month

e Distribution and management issues
— Retall vs. on-demand distribution
— Delivering a service vs. delivering a product

e Hosting issues
— Carriers don’t trust game code on their networks
— Demand high quality of service from game hosts

* Need to resolve cross-carrier gaming
— Carriers resist
— Developers (and customers) insist

JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

From Game Server
to Game Service

50 | 2004 JavaOne Conference | Session TS-1351

java.sun.com/javaone/sf

<,

Java“

"%ézm

51

Network

Game
Server

| 2004 JavaOne Conference | Session TS-1351

Object Persistence
Game Logic Execution
Communication

52 | 2004 JavaOne Conference | Session TS-1351

_ AR

Content Delivery?
Asset Management?
Provisioning?
Cheat Prevention? Security?
Reliability? Availability? Serviceability
Scalability? Performance ?
Cross-Network Communication?
Customer Relationship Management?
Player Authentication & Identity?
Player Communities and Matchmaking?
e-Commerce & Billing? /
Efficiency?
COMPLEXITY?

53 | 2004 JavaOne Conference | Session TS-1351

Network
Operations
Center

)
&
) Fy‘.. '
\ £
> L
&)
G

54 | 2004 JavaOne Conference | Session TS-1351

RAS Services
Provisioning Services
Game State Persistence
Game Execution Environment
Low-Latency X-Network Communication
Asset Management Services
Content Delivery Services
Authentication & Identity Services
Subscription Management & Billing Services

Customer Support Services
In-Game Administration Services
Network & Game State Security Services
Personalization & Portal Services
Lobby & Community Services
Messaging & Chat Services
plus
Managed Services & Support
Tools for Administrators
and Developers

55 | 2004 JavaOne Conference | Session TS-1351

JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

Crossing The
M i d d Ie M i Ie java.sun.com/javaone/sf

L=
—

Java

56 | 2004 JavaOne Conference | Session TS-1351

Crossing the Middle Mile

Network
Service
Provider

Network
Service
Provider

57 | 2004 JavaOne™ Conference | Session TS-1351

Crossing the Middle Mile

Network
Service
Provider

Network
Service
Provider

58 | 2004 JavaOne™ Conference | Session TS-1351

avaOne

Sun’s 2004 Worldwide Java Developer Conference-

Opportunity GNOCs

java.sun.com/javaone/sf

L=
—

Java

L QA

59 | 2004 JavaOne Conference | Session TS-1351

Opportunity GNOCs

e MMOGs are EXPENSIVE

— Getting to launch on an MMOG can
take 2 to 3 years and cost over $10M

— Launch costs (the first 3 months) can run
from $3M+ for a moderately successful game

— Ongoing support costs for network games consume
anywhere from 40 to 80 percent of revenues

— Achieving acceptable performance requires
direct-peering relationship with tier 1 providers

* Big opportunity for game hosting services
to step in and ease the pain

— Economies of scale and expertise
— Requires standard infrastructure to be economical

Opportunity GNOCs

e Scalable Java
technology-based
game services
architecture
— Capable of

SuU pportlng Game Server
multiple games ObjectStore

 Integration with
community
portals, back-
office functions
and network
operator services

. Platform Provider . Network Operator

. Game Developer . GTG

61 | 2004 JavaOne™ Conference | Session TS-1351

Jeff Kesselman
Athomas Goldberg

Sun Game Technology Group

62 | 2004 JavaOne™ Conference | Session TS-1351

JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

Server Architectures for

Massively Multiplayer
Online Games

Jeffrey Kesselman
Game Server Architect
Game Technology Group
Sun Microsystems, Inc.

java.sun.com/javaone/sf

<,

Java“

"%ézm

avaOne

Sun’s 2004 Worldwide Java Developer Conference-

Additional Slides

java.sun.com/javaone/sf

L=
—

Java

L QA

64 | 2004 JavaOne Conference | Session TS-1351

Launching an MMOG Service

e 2 to 3 years of development
e Getting to launch can run in the seven figures

e |nfrastructure costs for launch
(first 3 months) can run $2-3M+

e Very little re-use between properties

66

Sustaining a MMOG Service

Persistant World Support Costs

24/7 In-game customer representatives 40+ 7.00%
Game Masters (storyline, quests, volunteers, etc) 5+ 0.75%
Empowered Player Support Team (new player helpers, GM helpers) 5+ 0.75%
Other (anti-cheat investigation team, administrative assistant) 3+ 0.50%
Community Relations (we site, message boards, email) 5+ 0.75%

Live Development Team (new lands, bug fixes, new features, add-on SKUs) 12-15 6.00%

NOC Staff 8-12 4.25%
Co-located Server Hardware and Bandwidth 20.00%
Total Maximum Percentage of Revenue Goals 40.00%

Source: DFC Intelligence, Online Games Report

| 2004 JavaOne Conference | Session TS-1351

Crossing the Middle Mile

e Last mile currently beyond your control
— Broadband penetration increasing, but not there yet

e Middle Mile becomes focus
of network optimization

— Reduce or eliminate role of ISPs in delivery chain
— Co-location with Tier-1 Providers becomes essential

e Opportunity for game hosting services

— Vastly reduce support costs associated
with managing online games

— Requires common infrastructure to be economical

From Game Servers to Game Service

e Not delivering software, but a
24 x 7 x 365 network service

— Major Infrastructure Investment
— “Middle-Mile” problem

— Ongoing support costs consume
40 to 60+ percent of revenue

