
java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-13511

Server Architectures for
Massively Multiplayer
Online Games

Jeffrey Kesselman
Game Server Architect
Game Technology Group
Sun Microsystems, Inc.

| 2004 JavaOneSM Conference | Session TS-13512

Server Architectures for MMOLGs

• A brief history of massively
multiplayer online games

• The state of the industry today
• What Sun is bringing to the industry

What we’re going to cover

| 2004 JavaOneSM Conference | Session TS-13513

A Brief History of
Massively Multiplayer Games

• MUDs, MUSHs, MUCKs, and MOOs
─ The original “massively” multiplayer online games

─Online user pop of maybe 50 to 100 people
─ Based on the old Infocom text adventures

─State machine based textual simulation

You are in a
lecture hall.

There is a stage
upfront and an
exit to the rear.

You are in the
Moscone Center

lower lobby.

“Go Rear”

| 2004 JavaOneSM Conference | Session TS-13514

MUDs, MUSHs, MUCKs and MOOs

• Still text-based, but with multiple textual clients
• State formalized in concept of “room”
─ Only those in the same room

can effect that room or each other
─ N-squared scaling problem solved

with simple divide and conquer

• All of world state generally still held in-memory
• Ramifications
─ Limit on world-data size == memory size of host
─ The “fire-marshal” solution for over-crowded rooms

| 2004 JavaOneSM Conference | Session TS-13515

Today: The Everquest Model

• Still room based
─ “Region” or “area” == room + geometry

• Rooms assigned to servers
─ Area Transfer == server switch

• Login Server does initial connection

| 2004 JavaOneSM Conference | Session TS-13516

Everquest Login: Connect

• User connects to Login server
and authenticates

Area 1 Area 2 Login Server

User

Lo
gin

| 2004 JavaOneSM Conference | Session TS-13517

Everquest Login: Initial Region

• Login server transfers user to last region

Area 1 Area 2 Login Server

User

Re
gio

n
tra

ns
fer

| 2004 JavaOneSM Conference | Session TS-13518

Everquest Login: Initial Region

• User drops connection to login server
and connect to Area

Area 1 Area 2 Login Server

User

Connect

| 2004 JavaOneSM Conference | Session TS-13519

Everquest Login: Initial Region

• When user triggers area transfer,
area sends transfer command

Area 1 Area 2 Login Server

User

Region
transfer

| 2004 JavaOneSM Conference | Session TS-135110

Everquest Login: Initial Region

• User drops connection to Area 1
and connects to Area 2

Area 1 Area 2 Login Server

User

Connect

| 2004 JavaOneSM Conference | Session TS-135111

Everquest Login: Initial Region

• Area 2 updates login server on
user’s last area

Area 1 Area 2 Login Server

User

Update
Last Area

| 2004 JavaOneSM Conference | Session TS-135112

Still a MUD Basically

• “Rooms” (Areas, Regions)
organize resource usage

• Room state held in memory
• Now one server per room,

which increases capacity

| 2004 JavaOneSM Conference | Session TS-135113

The Limitations of the Model

• This is a perfect model if people
spread themselves out naturally
in a Gaussian distribution
─ People are social—they clump

• Wasted systems where no one is in that region
─ CPU idle, memory holding state

• Fire marshal limit is bigger but still present
• Not fault tolerant
• Static world due to limited persistence
• Area boundaries unnatural

| 2004 JavaOneSM Conference | Session TS-135114

Sharding

• Solved the fire marshal problem by duplicating
entire game—A shard == a duplicate cluster

• Issues:
─ Now you are wasting N servers in light used areas
─ Split the user-base—Bad for business

─Hurts recruitment
─Makes it harder to maintain

“critical mass” on any one shard

| 2004 JavaOneSM Conference | Session TS-135115

Replication

• Fault tolerance through replication of servers
─ Now wasting 2xN servers for each light used area
─ Double point of failure

| 2004 JavaOneSM Conference | Session TS-135116

Hidden Boundaries

• Hide the boundaries by over-lapping geometry
and having “leaky edges”
─ Works pretty well to make world appear continuous
─ This model maps well to a grid

• Issues:
─ Can still get stutters at region transfer time
─ Redundant data means regions have smaller

actual play areas (limit is memory size)

| 2004 JavaOneSM Conference | Session TS-135117

Spatial Subdivision

• Solve fire marshal problem by
dynamically creating sub-regions

• Issues:
─ Visibility dynamically decreases

as regions get sub-divided
─ Still doesn’t solve waste in unused base regions
─ Complicates replication and

makes it more expensive
─ Practical limits to sub-dividability (all the players

standing right next to each other)
─ Will not map to a grid

| 2004 JavaOneSM Conference | Session TS-135118

And So We Come to Today...

• What you have just seen is the limit
of MMOLRPG tech deployed today
─ Not fault tolerant
─ Expensive/wasteful
─ Limited persistence

─Only char data—best systems check point
every 15 min

─ Scaling only by splitting user base

| 2004 JavaOneSM Conference | Session TS-135119

The Sun Game Server

• A container system for highly scalable,
highly efficient, fault tolerant, dead-lock proof,
completely persistent, load-balanced execution
of event-driven simulations
─ Boy that’s a mouthful, huh?

• Based on a Paradigm Shift
─ Observation 1: Geometry is data
─ Observation 2: Data doesn’t use processor
─ Observation 3: Users use processor
─ Conclusion: Assign compute resources to users, not

regions

| 2004 JavaOneSM Conference | Session TS-135120

What the Developer Sees:
GLOs

• Developer creates a world of
Game Logic Objects (GLOs)
─ “Real objects”
─ Object register to handle events

• GLO(s) is/are defined by a Java™ Class
─ Must be serializable
─ If it is going to receive an event, must

implement the handler interface for that event

• GLO code is apparently mono-threaded
─ No synchronization necessary

| 2004 JavaOneSM Conference | Session TS-135121

What the Developer Sees:
Events and Tasks

• When an event arrives a Task is queued
─ Task is define as a GLO reference, a method

to call, and parameters to pass to it
─ When Task runs the GLO is “woken up”

and the method is called
─GLO can wake up and call other GLOs
─GLO can register event listeners
─GLO can queue tasks
─GLO can execute arbitrary method code

─ Tasks can either commit or abort
─On commit, modified GLOs are

written back and put back “to sleep”
─On abort, modified GLOs are rolled back and put

to sleep. Task is re-queued for later execution

| 2004 JavaOneSM Conference | Session TS-135122

What the Developer Sees:
Waking Up a GLO

• A GLO can be woken up
by a get() or by a peek()
─ get() is a write lock. GLO is “owned” by that

task and will be updated at task completion
─ peek() is a non-repeatable read; a task-local

copy of the GLO at its last saved value is created
and the GLO is not updated at task completion

─ Initial object fetch in task is always a get()

• get() causes potential contention; for maximal
parallel performance an app should use peek()
whenever possible
─ Some fine points and “best practices”

| 2004 JavaOneSM Conference | Session TS-135123

Life Cycle of an Example Event

• Step 1: Packet arrives from user
D

at
a

ar
riv

es

fro

m
 u

se
r

Task
Queue

| 2004 JavaOneSM Conference | Session TS-135124

Life Cycle of an Example Event

• Step 2: Event is queued for data packet

Task
Queue

User Data
Task

| 2004 JavaOneSM Conference | Session TS-135125

Life Cycle of an Example Event

• Step 3: Event is taken off queue for execution
 Initial object is fetched from Objectstore

Task
Queue

Ini
tia

l O
bje

ct

Req
ue

ste
d

| 2004 JavaOneSM Conference | Session TS-135126

Life Cycle of an Example Event

• Step 4: Object store returns GLO from get()

Task
Queue

Initial
GLO

 R
et

ur
ne

d
fro

m

 O
bje

cts
to

re

| 2004 JavaOneSM Conference | Session TS-135127

Life Cycle of an Example Event

• Step 5: A transactional context and a thread are
assigned to task; initial method invoked
on that thread

Task
Queue

Initial
GLO

Call method
with parameters

| 2004 JavaOneSM Conference | Session TS-135128

Life Cycle of an Example Event

• Step 5: Initial GLO chains in other GLOs
as need with get() or peek()

Task
Queue Initial

GLO

Re
qu

es
t G

LO

fro
m

 O
bje

ct
st

or
e

Obje
cts

to
re

re
tu

rn
s G

LO

Another
GLO

| 2004 JavaOneSM Conference | Session TS-135129

Life Cycle of an Example Event

• Step 6: Initial GLO returns
from initial method call

Task
Queue Initial

GLO

Another
GLO

Return

| 2004 JavaOneSM Conference | Session TS-135130

Life Cycle of an Example Event

• Step 7: Transaction is committed;
GlOs return to Objectstore

Task
Queue

| 2004 JavaOneSM Conference | Session TS-135131

Life Cycle of an Example Event

• Alternate Step 7: Transaction is aborted;
GlOs are rolled back and return to Objectstore

Task
Queue

| 2004 JavaOneSM Conference | Session TS-135132

That’s It

• The horizontal scaling, fault-tolerance,
persistence, and load balancing are all
properties of the underlying system

| 2004 JavaOneSM Conference | Session TS-135133

How the Magic Works!

• Bet you’re dying for the next slides...

| 2004 JavaOneSM Conference | Session TS-135134

The Sun Game Server Architecture

| 2004 JavaOneSM Conference | Session TS-135135

Okay, So What Does That Mean?

• In Architecture it is structured much
like a classic 3 tier enterprise system
─ Comm Layer (Edge Layer)
─ Stateless Game Logic Layer (Business Logic)
─ Object Store (Database)

• In implementation it is radically different because
its needs are different
─ Total input to output system latencies in 10s of ms
─ Requires no multi-threading knowledge to use
─ Requires no database knowledge to use
─ Handles persistence (almost) orthogonally
─ Very simple coding model

| 2004 JavaOneSM Conference | Session TS-135136

Tier 3: The Objectstore

• This is where a lot of the magic happens
• Looks to tier 2 like a highly available

cloud of persistent objects
• All game state for all games running on the

Sun's game server back-end infrastructure
resides here

• Tier 2 checks objects out as needed by a task
and returns them when tasks complete or abort

• It is a very fast fault-tolerant horizontally scalable
transactional database
─ Time to fetch and de-serialize an

object is in the tenths of milliseconds

| 2004 JavaOneSM Conference | Session TS-135137

Tier 2: The Game Logic Layer

• This is a stateless task processor
• Users are assigned to one of a

horizontally scaled set of stacks
• As user events come in, they create

tasks in a task queue
• Because this layer is stateless, if it dies,

the users just reconnect to another stack
and keep on playing

| 2004 JavaOneSM Conference | Session TS-135138

Tier 2: Task Abort

• Tier 3 (Objectstore) provides deadlock detection
through Timestamp Ordering
─ Std deadlock avoidance algorithm
─ “Fair” (ensures no starvation)

• On potential deadlock, tier 2 is notified
and newer task aborts
─ GLOs rolled back
─ GLO locks released
─ Task surrenders thread and transaction
─ Task is re-queued for later execution

• Obviously lots of deadlocks hurt efficiency
─ Game Logic Layer tracks and gives warnings

| 2004 JavaOneSM Conference | Session TS-135139

Tier 1: The Comm Layer

• “User manager” is the only part
that knows how client is connected
─ Generates user login/logout/packet events
─ Handles server discovery and selection
─ Different user managers for different connection

strategies
─e.g. Gamespy, HTTP, etc.

• Makes the user base seem contiguous
─ Tier 2 just sends messages to user IDs;

doesn’t care where they are actually connected
• Provides “shortcut” for client to client comm
─ Never goes to tier 2
─ Safer then direct client to client connection

| 2004 JavaOneSM Conference | Session TS-135140

Failure and Recovery Modes

• N horizontal stacks fail
─ Users reconnect to other stacks and go on playing
─ Time to reconnect hidden by client dead-reckoning
─ Performance degrades evenly throughout back-end
─ Only loss is tasks on queue (unimportant)

• Entire back end fails
─ Object store is left in a referentially integral state
─ At most a few moments of gameplay are lost

• Resources added to back end
─ New stack calls out and says stack available
─ Heavily-loaded stacks force some of their user

to reconnect

| 2004 JavaOneSM Conference | Session TS-135141

Dynamic Load Balancing

• Stacks send periodic load updates
• Heavily loaded stacks give up

users to lightly loaded ones
• One stack can run many

different games at once
• System load balances across all games
─ When games need more of the back end they get it

─Games that are always lightly used only use that
percentage of the resources

─Makes many lightly used games as economically
sound as one heavily used game

─Makes “pay as you use” models possible

| 2004 JavaOneSM Conference | Session TS-135142

That’s It

• Obviously the scalable Objectstore
is a major piece of the technical puzzle
─ Current implementation written ontop of TimesTen
─ Sun-magic to make it horizontally scale

for such a write intensive application

• The “app server” for near real-time
event-driven simulations

• Currently in ongoing development
• White paper down at the entertainment pavilion

| 2004 JavaOneSM Conference | Session TS-135143

The Rest of the Story

• All that other back-end stuff we do so well...
─ Billing, authentication, portal, etc.

• The Cell Phone infrastructure
─ Provisioning, communications, etc.
─ All the cell phone stuff the User Manager

doesn’t deal with

• Athomas Goldberg is your man!

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-135144

Bridging the
Network Divide

| 2004 JavaOneSM Conference | Session TS-135145

| 2004 JavaOneSM Conference | Session TS-135146

| 2004 JavaOneSM Conference | Session TS-135147

Game Design Challenges

• Mobile devices are currently
treated like consoles
─ Need to find activities appropriate to each device

• Need to look for unique games
─ Games that use other parts of the device

─Camera, GPS, Controllers, etc.
─ Massively Multiplayer Casual Online Games

• Mobile devices are social devices
─ Leverage social interaction between players
─ Portals into a shared experience

| 2004 JavaOneSM Conference | Session TS-135148

Technical Challenges

• Need common infrastructure
─ Cost of developing online capability

for a single platform can crush a game

• Need to standardize, so game
developers can focus on games
─ Cross-network communication
─ Federated identity
─ Micropayments and billing

• Need to work with developers and operators
─ Develop solutions to address

the entire delivery chain

| 2004 JavaOneSM Conference | Session TS-135149

Business Challenges

• Pricing models
─ Existing models don’t support multiplayer

─ “Mobile Everquest” would cost you $10,000/month

• Distribution and management issues
─ Retail vs. on-demand distribution
─ Delivering a service vs. delivering a product

• Hosting issues
─ Carriers don’t trust game code on their networks
─ Demand high quality of service from game hosts

• Need to resolve cross-carrier gaming
─ Carriers resist
─ Developers (and customers) insist

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-135150

From Game Server
to Game Service

| 2004 JavaOneSM Conference | Session TS-135151

Network
Game
Server

| 2004 JavaOneSM Conference | Session TS-135152

Network
Game
Server

Object Persistence
Game Logic Execution

Communication

| 2004 JavaOneSM Conference | Session TS-135153

Network
Game
Server

Content Delivery?
Asset Management?

Provisioning?
Cheat Prevention? Security?

Reliability? Availability? Serviceability
Scalability? Performance?

Cross-Network Communication?
Customer Relationship Management?

Player Authentication & Identity?
Player Communities and Matchmaking?

e-Commerce & Billing?
Efficiency?

COMPLEXITY?

| 2004 JavaOneSM Conference | Session TS-135154

GameGame
NetworkNetwork

OperationsOperations
CenterCenter

| 2004 JavaOneSM Conference | Session TS-135155

NetworkNetwork
GameGame
Data CenterData Center

RAS Services
Provisioning Services

Game State Persistence
Game Execution Environment

Low-Latency X-Network Communication
Asset Management Services

Content Delivery Services
Authentication & Identity Services

Subscription Management & Billing Services
Customer Support Services

In-Game Administration Services
Network & Game State Security Services

Personalization & Portal Services
Lobby & Community Services
Messaging & Chat Services

plus
Managed Services & Support

Tools for Administrators
and Developers

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-135156

Crossing The
Middle Mile

| 2004 JavaOneSM Conference | Session TS-135157

Crossing the Middle Mile

Game NOC

Network
Service
Provider

Network
Service
Provider ISP

ISP

ISP

Player

Player

Player

Player

???

| 2004 JavaOneSM Conference | Session TS-135158

Crossing the Middle Mile

Game NOC

Network
Service
Provider

Network
Service
Provider ISP

ISP

ISP

Player

Player

Player

Player

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-135159

Opportunity GNOCs

| 2004 JavaOneSM Conference | Session TS-135160

Opportunity GNOCs

• MMOGs are EXPENSIVE
─ Getting to launch on an MMOG can

take 2 to 3 years and cost over $10M
─ Launch costs (the first 3 months) can run

from $3M+ for a moderately successful game
─ Ongoing support costs for network games consume

anywhere from 40 to 80 percent of revenues
─ Achieving acceptable performance requires

direct-peering relationship with tier 1 providers

• Big opportunity for game hosting services
to step in and ease the pain
─ Economies of scale and expertise
─ Requires standard infrastructure to be economical

| 2004 JavaOneSM Conference | Session TS-135161

Opportunity GNOCs

Game Server

D
ev

el
op

er
 P

or
ta

l

G
am

e 1

G
am

e 2

G
am

e n

Id
en

tit
y/

B
ill

in
g

P
la

ye
r P

or
ta

l

J2EE/JSLEE

C
lie

nt
 P

ro
vi

si
on

in
g

P
re

se
nc

e

S
M

S
/M

M
S

Server Blades

Server OS

Platform Provider Network Operator

Game Developer GTG

B
an

dw
id

th
 P

ro
vi

si
on

in
g

J2SE

Comm.

ObjectStore

O
th

er
 O

pe
ra

to
r S

er
vi

ce
s

Lo
ca

tio
n

• Scalable Java
technology-based
game services
architecture
─ Capable of

supporting
multiple games

• Integration with
community
portals, back-
office functions
and network
operator services

| 2004 JavaOneSM Conference | Session TS-135162

Q&A
Jeff Kesselman
Athomas Goldberg
Sun Game Technology Group

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-135163

Server Architectures for
Massively Multiplayer
Online Games

Jeffrey Kesselman
Game Server Architect
Game Technology Group
Sun Microsystems, Inc.

java.sun.com/javaone/sf

| 2004 JavaOneSM Conference | Session TS-135164

Additional Slides

| 2004 JavaOneSM Conference | Session TS-135165

Launching an MMOG Service

• 2 to 3 years of development
• Getting to launch can run in the seven figures
• Infrastructure costs for launch

(first 3 months) can run $2-3M+
• Very little re-use between properties

| 2004 JavaOneSM Conference | Session TS-135166

Sustaining a MMOG Service

Persistant World Support Costs
Customer Service/Player Relations Employees % of Revenues
24/7 In-game customer representatives 40+ 7.00%
Game Masters (storyline, quests, volunteers, etc) 5+ 0.75%
Empowered Player Support Team (new player helpers, GM helpers) 5+ 0.75%
Other (anti-cheat investigation team, administrative assistant) 3+ 0.50%
Community Relations (we site, message boards, email) 5+ 0.75%
Game Operations
Live Development Team (new lands, bug fixes, new features, add-on SKUs) 12-15 6.00%
Network Operations
NOC Staff 8-12 4.25%
Co-located Server Hardware and Bandwidth 20.00%
Total Maximum Percentage of Revenue Goals 40.00%

Source: DFC Intelligence, Online Games Report

| 2004 JavaOneSM Conference | Session TS-135167

Crossing the Middle Mile

• Last mile currently beyond your control
─ Broadband penetration increasing, but not there yet

• Middle Mile becomes focus
of network optimization
─ Reduce or eliminate role of ISPs in delivery chain
─ Co-location with Tier-1 Providers becomes essential

• Opportunity for game hosting services
─ Vastly reduce support costs associated

with managing online games
─ Requires common infrastructure to be economical

| 2004 JavaOneSM Conference | Session TS-135168

• Not delivering software, but a
24 x 7 x 365 network service
─ Major Infrastructure Investment
─ “Middle-Mile” problem
─ Ongoing support costs consume

40 to 60+ percent of revenue

From Game Servers to Game Service

